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An Acoustic Measure for Word Prominence
in Spontaneous Speech
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Abstract—An algorithm for automatic speech prominence
detection is reported in this paper. We describe a compara-
tive analysis on various acoustic features for word prominence
detection and report results using a spoken dialog corpus with
manually assigned prominence labels. The focus is on features such
as spectral intensity and speech rate that are directly extracted
from speech based on a correlation-based approach without
requiring explicit linguistic or phonetic knowledge. Additionally,
various pitch-based measures are studied with respect to their
discriminating ability for prominence detection. A parametric
scheme for modeling pitch plateau is proposed and this feature
alone is found to outperform the traditional local pitch statistics.
Two sets of experiments are used to explore the usefulness of the
acoustic score generated using these features. The first set focuses
on a more traditional way of word prominence detection based
on a manually-tagged corpus. A 76.8% classification accuracy
was achieved on a corpus of role-playing spoken dialogs. Due to
difficulties in manually tagging speech prominence into discrete
levels (categories), the second set of experiments focuses on eval-
uating the score indirectly. Specifically, through experiments on
the Switchboard corpus, it is shown that the proposed acoustic
score can discriminate between content word and function words
in a statistically significant way. The relation between speech
prominence and content/function words is also explored. Since
prominent words tend to be predominantly content words, and
since content words can be automatically marked from text-de-
rived part of speech (POS) information, it is shown that the
proposed acoustic score can be indirectly cross-validated through
POS information.

Index Terms—Part of speech, prominence detection, rich speech
transcription, spoken language processing.

I. INTRODUCTION

PEECH prominence detection is useful in many spoken
Slanguage applications. To create a more complete natural
language understanding (NLU) capability, knowledge of just
“what” was spoken, as provided by speech-to-text transcription,
by itself is not sufficient; knowledge about “how” a message
is communicated i.e., information about linguistic and affec-
tive expressions is also important. Prominence, which refers
to a prosodic property, and information that is typically not
directly conveyed by conventional speech recognition systems,
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provides valuable linguistic information key to understanding
speech. For instance, previous work [21] has demonstrated the
usefulness of measures of prominence in clarifying ambigu-
ities in spoken utterances. Another motivation for automatic
prominence detection arises in the context of robust processing
of spontaneous speech, a task rendered difficult due to several
factors. The greater acoustic variability found in spontaneous
speech makes acoustic modeling more challenging. Similarly,
the incomplete syntax and disfluency prevalent in spontaneous
speech degrade the power of traditional N-gram language
models. Hence, as a result, automatic recognition of sponta-
neous speech is considerably more difficult, in turn leading to
serious problems for things that follow such as NLU algorithms
that operate on the speech recognizer’s output. However, it
is well known that prosodic events, often ignored in ASR,
carry rich and critical information in spontaneous speech
communication. Hence, one could expect that information
about prominence, as well as other prosodic events, can play
an important role in processing and understanding spontaneous
speech. For example, locating content words is an important
goal in NLU and its accuracy has a crucial influence on the
overall system performance. So, in addition to the semantic
analysis of the text, measures of speech prominence derived
from the acoustic signal could serve as a useful feature for
automatic content word location.

A. The Notion of Prominence

There is a diversity of viewpoints in defining the notion of
prominence. Terken defines prominence as “words or syllables
that are perceived as standing out from their environment” [5],
while Streefkerk et al. use it to refer to the “perceptual salience
of a language unit” [3]. It also does not have a clear distinction
with respect to sentence accent or pitch accent [2].

Although there exist subtle differences and many debates re-
garding these terms, we will not try to survey them in this paper.
Instead, we focus on the challenges of discretely categorizing
speech data directly into such perceptual terms. We point out
that many challenges arise from the fuzzy nature of the descrip-
tion of prominence, and offer one solution to indirectly score
word-level prominence.

Prosody can be viewed at two levels: one, which is at the
physical signal level, is explored through acoustic phonetic
properties such as pitch, duration, and intensity. The other, at
a more abstract level, focuses on its role within the abstract
linguistic structure rather than its physical realization. Promi-
nence, considered as a prosodic attribute, thus could habitually
be viewed within these two scopes [24]. Moreover, most defini-
tions of prominence are inherently perceptually motivated with
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its physical realization linked to the speech production process.
Unfortunately, there is much unknown about the underlying
perception and production details, and few quantitative studies
have been done [27].

The subjective nature of prominence, coupled with the
lack of clear categorization, poses challenges for deriving a
reliable quantitative measure to describe it. Specifically, this
underscores two challenges for devising any scheme for auto-
matic prominence description: First, depending on the chosen
representation of prominence, human perception can be greatly
variable among people and hence in turn impacts the use of such
information for automated learning and or evaluation. Second,
the relations between prominence and acoustic-phonetic speech
characteristics and other higher level linguistic structure are
not completely understood, as evidenced from a number of
prior studies. In this paper, we consider both challenges: inves-
tigation of various acoustic measures that better correlate with
prominence, as well as finding efficient ways of automatically
detecting and validating prominence.

B. Quantifying Prominence

In order to enable an objective study on this problem, promi-
nence has to be quantified. Various methods have been proposed
in the past, each with its own advantages and limitations. Almost
all researchers tend to take the approach of imposing discrete
categorization on prominence measures. For instance, Portele
and Heuft [7] define prominence on a scale from O to 30 at
the word level. Likewise, Terken [24] defines prominence on a
scale from O to 10. But implementing this measure is a chal-
lenging task for the human transcribers that provide data for
model training. On the other hand, a relatively easy task is to just
mark if a word is prominent or not [3], i.e., the prominence level
of each word can be tagged on binary scale of 0 or 1. It should
be noted that in these, and most other previous studies, people
have mostly used read speech as the data source. Even for those
data, studies show that humans only reach limited agreement
(about 80% [4]) on word-level prominence annotation. These
often serve as either training samples or for evaluating results
of automatic prominence detection.

In this paper, we consider a new method for scoring promi-
nence on a continuum. The score combines spectral and tem-
poral speech segmental features along with prosodic features.
In addition to using manually tagged data, we investigate a new
indirect way for evaluating this prominence score. Specifically,
the correlation of this prominence score to a linguistic measure
(part of speech) is investigated as an alternative to directly at-
tempting classification into discrete prominence levels. In this
case, the algorithm does not rely on manual transcription of
prominence levels but utilizes more easily available speech-to-
text information from ASR/human transcriptions for modeling
and validation.

The rest of the paper is organized as follows: Section I-C
reviews previously reported prominence detection methodolo-
gies. Section I-D introduces part of speech (POS) as a promi-
nence correlate. Section I-E discusses various acoustic corre-
lates of prominence. Section II introduces the data we use in
this study. Section III describes the algorithm to detect syl-
lable nuclei, a key component of the prominence measurement,
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and one that does not require automatic speech recognition.
Section IV provides a discriminative study on different feature
categories. Section V evaluates both the supervised and unsu-
pervised prominence score calculation on a manually tagged
prominence corpus. Section VI discusses POS-based validation
of the prominence scores through discrimination of content and
function words. Finally, we provide our conclusions and some
discussions in Section VII.

C. Prominence Detection Methodology

There is a long history of research studying acoustic corre-
lates of prominence and sentence accents [26]. Focused pho-
netic studies often restrict the problem to tens of utterances and
apply various careful labeling schemes to derive inductions on
prominence cues based on empirical evidence [5], [28]. More-
over, in order to control variability, these experiments are re-
stricted to simple utterances, sometimes involving only one or
two pitch accents [24]. These studies have provided valuable in-
sights, serving as a basis for much of the work in this domain,
although more detailed investigations are required to further val-
idate the generality of these results and to expand their scope.
For example, it remains unclear how such findings will gener-
alize when more complicated contexts are introduced and when
spontaneous, as against read, speech is involved.

A majority of the engineering studies, on the other hand,
tend to use automated statistical approaches on significantly
larger amounts of data to support various findings [1], [3]. A
recent, and a good representative, study is reported in [34],
where a subset of the TIMIT utterances composed of 7327
syllables taken from 485 utterances spoken (read) by 51 dif-
ferent speakers of American English are used. These syllables
are manually transcribed as prominent or nonprominent. The
correct rate is 80.6% with 7.22% false alarm rate and 12.17%
missed deletion rate. An earlier work [35] used 453 utter-
ances from the English language ATR conference-registration
dialogues as the database. These data are different from the
previous ones in the sense that they are from a conversational
domain (though not spontaneous). Again, those data were
manually transcribed with syllable stress and accent. A 61.6%
correct rate was achieved on three-class discrimination (ac-
cented/stressed but unaccented/unstressed).

In most studies, speech with manually tagged prominence is
used for evaluation. This approach is considered in this paper
as well. However, since manual transcription is not only an ex-
pensive and time consuming process, but it also has large un-
avoidable variability, and data made available in this way tends
to be limited [1], [7], [24]. We hence also consider an alternative
way to evaluate acoustic measures of prominence, which is de-
scribed in the next section, by correlating with function/content
word class discrimination. The latter is derivable through au-
tomatic POS tagging and can potentially enable working with
larger amounts of data.

D. POS and Prominence Performance Evaluation

POS has been well studied within the natural language pro-
cessing community. It might be viewed as a shallow parsing of
language. Even though it is far from being adequate in con-
veying the meaning of the language, we argue that it carries
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salient information conveying speech prominence. For instance,
people tend to be more prominent on content words compared
to function words. This property in fact is exploited in many
text-to-speech systems that rely upon the simple function/con-
tent word distinction [27]. In such systems, function or closed
class words, such as prepositions and articles, are less promi-
nent (or deaccented), while content, or open class words, such
as nouns and verbs, are prominent (or accented) [27].

One of goals in this paper is to exploit POS information for
evaluating prominence detection. The advantage is that it would
avoid the human subjectivity in direct prominence transcrip-
tion and hence is easier to scale up to using large amounts of
spoken language data. Another key advantage for using POS
measure is that the state of the art automatic POS tagging has
very good performance. Baseline unigram systems have the ac-
curacy of about 90%. With Brill’s tagger that uses simple con-
textual knowledge, the performance has reached 97.2% [16].
However, we should note that the tagging performance using
automatically transcribed spontaneous speech might be some-
what lower but still adequate for our purposes. We use Brill’s
tagger in this work.

We should also note that there are some limitations of POS-
based prominence analysis. First, there are variations of promi-
nence realization within each word class (their behavior might
be unknown). Second, the relation between expected promi-
nence with POS has exceptions [29]. For example, some func-
tion words might have higher prominence to address special
meanings.

In this paper, we consider both manually tagged prominence
labels as well as the POS information for investigating auto-
matic prominence detection.

E. Acoustic Correlates of Prominence

Numerous studies have been carried out on acoustic analysis
of prominence in the recent years and there is a rough agree-
ment in the literature that syllable duration, pitch pattern, and
intensity (or subband energy) have close correlation with speech
prominence [1]. (Energy is some times listed alone. We include
it in the intensity category). Nevertheless a number of key ques-
tions remain unanswered including: Are all these proposed fea-
tures equally important and if not, what is their relative impor-
tance? Are there other possible features that better correlate with
prominence? We will consider these questions below.

1) Syllable Duration: Syllable duration is an obvious fea-
ture. Speakers tend to stretch the constituent syllable durations
when they try to emphasize a specific word [13]. Automatic
syllable detection (ASD) has a long research history with
an extensive literature on it. Early efforts to detect syllables
were predominantly rule-based, and empirically derived, using
various acoustic features extracted via signal processing ap-
proaches [36], [37]. Later research trends in locating syllable
boundaries have moved from knowledge-based methods to
data-driven approaches [9]. Here, a variety of speech features
are extracted and models are built via statistical learning ap-
proaches such as HMM [38] or ANN (MLP) [8]. The major
challenges are data size and the choice of the learning method
to capture hidden patterns. Even with continuous improve-
ments, neither approach provides satisfactory performance on
continuous read speech, let alone spontaneous speech.

Due to the difficulties in locating syllable boundaries in
the aforementioned methods, we have instead opted for using
spectral-envelope-based speech rate information [17]. Such a
method has apparent strengths: it does not rely on any statistical
models that require considerable amounts of annotated data,
such as HMMs in automatic speech recognition. Moreover,
it does not rely on any explicit linguistic knowledge either.
Hence, it could work in parallel with, or even as a front-end
for, automatic speech recognition. Specifically, in this paper
we adapt and expand on the algorithm proposed for speech
rate estimation in [17]. We have shown such an approach could
provide state of the art speech rate estimation performance [6].
As a side product, the method also provides syllable nucleus
information. Further details are provided in Section III.

2) Pitch Patterns: Pitch patterns have long been believed to
have strong correlation with prominence [3]. Again, in order to
do efficient modeling, several excellent efforts have been made
to quantitatively describe the complex pitch trajectory behavior.
One trend attempts at categorizing all possible patterns by using
a multi-level profile description [10]. A famous example of this
is the TOBI system [11]. Yet this approach has its limitations
in its self-completeness (and as a result many prosodic systems
use a variant system modified from TOBI to meet specific needs
[23]) and transcribing effectiveness. The other trend is to sacri-
fice or distort details of the pitch behavior and extract the very
key desired features. Some widely used approaches in this con-
text include the rise/fall/connection (RFC) model [12] and the
tilt model [30]. Nevertheless, almost all of these methods treat
pitch at the suprasegmental level. What we opt in this paper is
to consider the pitch behavior in the syllable nuclei range. As
the pitch range in this segmental range decreases considerably,
we hypothesize that a simple modeling scheme would be an ad-
equate capture the pitch behavior.

The interesting problem is then to capture valid patterns from
the pitch trajectory at this representational scale. Again, there
has been a long tradition in investigating this problem. Even
though the term “prominence” seldom appears in this litera-
ture, the related term “accent” is often referenced. Numerous
hypotheses have been proposed as valid prominence or accent
indicators and each claim validated using specific data and eval-
uation method. For example, the distance between FO maxima
and the corresponding virtual baseline at that timepoint has been
proposed as a valid indication of accent [24]. Streefkerk [3] used
pitch median and pitch range as a measure of accent. Sluijter and
van Heuven [13] used pitch variation (pitch movement). Taylor
[30] proposed to consider the accent characterized by a rise and
followed by a fall. In the context of prominence analysis, such
shape characterization may prove useful. Similarly, Tamburini
[1] applied the sum of rise and fall amplitudes (directly mea-
sured from Taylor’s [30] tilt parameter) for a more detailed pitch
trajectory shape analysis. An interesting work by Knight [32] in
fact shows that the pitch plateau is related to prominence per-
ception. Also in that work, the absolute pitch level is shown to
be an indicator of prominence.

While there are different hypotheses, and empirical findings,
about the relation between pitch patterns and prominence that
have been proposed in the literature, there is still no universally
accepted model. There are even some arguments [22], though
relatively few, saying that pitch plays relative little importance
in the context of prominence. Assuming pitch-induced promi-
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nence only through a single fO contour, Kochanski [31] recently
showed that prominent and nonprominent syllables have sim-
ilar fO pattern histograms which in turn were used to indicate
that they provide little or no discriminating ability.

Key questions that arise in this context relate to if and how
these various findings relate with one another and if there exist
rules/models that are more fundamental that can be learnt to ad-
equately explain and reconcile all the aforementioned behavior.
A major challenge to this of course is the availability of suf-
ficient amounts of reliably transcribed data to facilitate mod-
eling in statistically meaningful ways. Toward addressing this
issue, we did a comparative analysis on various features to study
their discriminative distance with respect to prominent and non-
prominent class using Kullback-Leibler distance and through
ANOVA analysis.

3) Spectral Intensity: Spectral intensity also correlates with
prominence [1]. Prior research has shown that energy in the
500-2000 Hz band has maximum correlation with prominence
[13]. Note that this also approximately coincides with the sono-
rant band (300-2300 Hz) in Strom’s study [14]. Interestingly,
the other two bands ([0-300] Hz, [2300-6000 Hz]), related to
the nasal and fricative bands, have been shown to have not much
acoustic correlation with prominence.

Beyond the straightforward measure of such subband energy,
there has been research in measuring various transforms of spec-
tral intensity. There has been a notion of “loudness” [25], an
approximation to steady state perceptual loudness, with various
measures for it such as through power spectral density [31].
We group all these measures into the spectral intensity measure
since they are all highly correlated. In this paper, we primarily
focus on the sonorant band, but instead of directly extracting the
subband energy, we apply both a temporal and spectral correla-
tion within that band. As a result vowels, due to their well-de-
fined formant structure, could be boosted in the correlation en-
velope while the consonants and noises are not. In a prelimi-
nary study, we found that such an approach could help boost the
center syllable magnitude and be more noise robust [6].

4) Relation Between Feature Categories: The aforemen-
tioned three feature categories come from three independently
controllable aspects of speech production. From a signal-ma-
nipulation point of view, one can, for example, fix the syllable
duration and change the pitch and intensity within that param-
eter range. Interestingly, however, these three features show
strong correlation with one another under the condition of
prominence.

Among the three categories of features, syllable duration and
spectral intensity are straightforward to measure using well-es-
tablished methods. However, as discussed in the previous sec-
tion, capturing pitch pattern relations to prominence is chal-
lenging, and not adequately understood. We will report on a
comparative study of all independent pitch behavior features in
terms of their discriminative ability for prominence detection.

The remaining problem is how to fuse the information
provided by the three features to optimize the prominence
detection. One simple approach would be to assume no prior
knowledge and feature independence, and set equal weights for
all three features using the maximum entropy rule. However, a
more reasonable, and often adopted, approach is to formulate
an optimization problem by defining an evaluation function that
can be derived using a development set. By maximizing the
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classification performance by proper tuning of the evaluation
function, for example using EM algorithm, a more reasonable
fusion scheme can be determined. The shortcoming of this
approach is the potential risk that the evaluation function can
be easily over-fit to the training set. Additionally, if we are
tuning towards manually transcribed data sets, we should keep
in mind the limitations of data size and transcriptions being
not perfect to ensure statistical convergence. However, for
POS-based evaluation, such limitations may be overcome at
least partially due to the ability for processing large amounts
of text data fairly reliably. In this paper, we will consider both
supervised and unsupervised schemes. It should be noted that
that the fusion we consider throughout paper includes both
decision level and feature level combinations, and hence inher-
ently accommodates multi-dimensional classifiers like support
vector machines (Section V).

II. DATA DESCRIPTION

Two different speech corpora were used for the studies de-
scribed in this paper. The primary one is the ICSI-annotated
switchboard data corpus used for analysis and testing of the
methods proposed in this paper for unsupervised prominence
detection based on POS correlation. A second, smaller corpus
of spoken dialogs from role-playing scenarios which includes
manually tagged word prominence information was used for a
comparative analysis with the POS-based method.

A. ICSI Switchboard Data Corpus

In the Switchboard audio corpus two individuals discuss,
over the telephone, a specific topic such as automobiles, sports,
or politics for several minutes [18]. The data subset we used
is from the phonetic switchboard transcription project at ICSI
(University of California, Berkeley) that comprises 5682
speech spurts taken from the full Switchboard corpus [33]. It
represents portions of 618 conversations from 750 speakers, of
both genders, and spans a wide range of adult ages and dialectal
patterns of American English. They were phonetically tran-
scribed by a group of eight linguistics students all of whom had
received previous training in phonetic transcription and general
phonetics/phonology. Along with syllable transcription, word
transcription and boundary timing are also provided. Manual
prominence labels are not available.

B. SASO Dialog Corpus

To enable comparisons of the proposed POS-based method
with prominence detection that uses manually tagged promi-
nence labels, we use a dialog corpus that provides word level
prominence markings made by human listeners. This helps us
evaluate part-of-speech based prominence detection against
direct prominence detection. The data are from role-playing
dialogs between two individuals involved in negotiation and
conflict resolution in military logistics as a part of the SASO
project [20] at the University of Southern California. A subset
of seven dialogs comprising 480 utterances was used for this
study. Three native speakers of English, with speech pro-
cessing/linguistics training, manually tagged these utterances.
Instead of quantizing prominence into many different levels,
the transcribers just marked the most prominent word(s). The
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Fig. 1. Algorithm for locating syllable nucleus position from speech.

dataset has a total of 3247 words with 862 transcribed as promi-
nent. Of the 862 768 were content words. The inter-transcriber
agreement was 84%.

III. ALGORITHM DESCRIPTION

The proposed prominence detection relies on spectral and
temporal features extracted from the speech signal to provide
direct information about the syllable nucleus location, spectral
intensity information as well as pitch pattern dynamics across
an utterance. Details of each of these are given below.

A. Syllable Nucleus Estimation

Syllable nucleus estimation is a key ingredient of the algo-
rithms we describe not only because syllable nucleus duration
is an important acoustic correlate of prominence but it also pro-
vides the basis for defining other useful features. Locating a syl-
lable using acoustic information is a difficult task, especially for
spontaneous speech, and we describe a correlation-based signal
analysis method to get a fairly robust estimate of the syllable
nucleus.

The algorithm extracts the syllable nuclei from the correla-
tion envelope of the speech signal. We extend the idea of sub-
band correlation [17] and combine it with temporal correlation
to obtain the final correlation envelope. The details of the algo-
rithm, summarized in Fig. 1, are described below.

1) Asdescribed earlier in Section I-E, since the sonorant band
is the most informative in the context of prominence detec-
tion, instead of performing a full band analysis, we only
focus on the sonorant band. However, it should be noted
that sonorant band also contains constants such as nasals
and semivowels. This could introduce errors to the syllable
nucleus detection. While such a problem is difficult to ad-
dress in a general way, some of the post processing steps
introduced in our approach, are aimed to handle, at least
partially, this problem.

2) We make finer, and more, band divisions. They are But-
terworth bandpass filters centered at 360|480|600|720|
840[1000]1150|1300|1450]|1600|1800|2000|2200  [19].

-
:Mv\n/\\,
VAN

| |

0.4 0.6 0.8 1.0
terberneboene oo breeebeeoe beenebeee e been

Fig. 2. Illustration of the results of the algorithm in Fig. 1. (a) Speech wave-
form. (b) Pitch trajectory. (¢) Smoothed correlation envelope. (d) Location of
maxima (peaks). (e) Location of minima (valleys).

The purpose is to track formant movement by selecting
the high-energy subbands for the correlation (refer to [6]
for details).

3) Instead of doing a point-wise correlation, we do a selected
subband correlation. Using experimental results from a de-
velopment test set, we choose a subset of bands that have
most energy and correlate them. Doing this allows the for-
mant structure of vocalic regions to render the correlation
envelope for vowels better emphasized compared to con-
sonant and noise regions.

4) In order to make the syllable nucleus location more ap-
parent and make the final correlation envelope smooth, not
only is correlation performed spectrally, but also tempo-
rally. Here again, the size of the temporal window used for
correlation was chosen empirically as a result of experi-
ments on a development test (further details may be found
in [6]).

5) To counter spurious peaks in the correlation envelope due
to fricatives and other nonspeech noise, pitch verification
is introduced to the algorithm. Peaks corresponding to un-
voiced and nonspeech segments are rejected [for example,
refer to Fig. 2(b)].

6) As additional measures to ensure robustness of syllable
counting on the correlation envelope, further smoothing
techniques are applied. One involves applying a Gaussian
smoothing window, and the other is by setting a minimum
threshold on peak heights. Again, these parameters are au-
tomatically learned using a development test.

As noted in the above description, the development test is
utilized to tune the parameters of the various blocks of the al-
gorithm. The goal is to maximize the correlation between the
test syllable count and the transcribed count. Briefly, we first
initialize all the parameters by Monte-Carlo simulation. The
top performing candidate parameters in the development set are
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Fig. 3. TIllustration of the plateau in the context of prominence, based on [30].

then chosen for a sensitivity analysis. This entailed perturbing
each parameter by a small amount to seek an increase in perfor-
mance until reaching a local maximum. Finally, the best param-
eter set is used to do the analysis.

Performing peak counting on the correlation envelope curves
has been to shown to provide a good estimate of the true syl-
lable counts, and has been advantageously used in estimating
speech rate resulting in much improved performance on the ICSI
switchboard data corpus. Preliminary experimental results on
the Switch Board Corpus can be found in [6]. For example, the
utterance in Fig. 2 has three syllables each centered in the peak
of the curve. We will describe in the next section how we can get
further useful features for prominence detection by exploiting
the syllable estimation process.

B. Syllable Duration

We will describe in this section, how syllable duration and
spectral intensity features could be derived from the correlation
envelope. In addition to peak counting [Fig. 2(d)], we also keep
the information of the valleys (local minima of the correlation
envelope), as illustrated in Fig. 2(e). The duration score is re-
trieved by computing the valley-to-valley distance and normal-
izing it by the maximum duration. This we found was a more ro-
bust measure than peak-to-peak based distance: Since we apply
pitch verification and thresholds for peak selection, there exist
cases, albeit infrequently, that have no measurable peak between
neighboring valleys. Hence, the distance we consider for dura-
tion calculation is between neighboring valleys that have a peak
in between [Fig. 2(d) and (e)]. This method determines the syl-
lable nucleus without requiring any linguistic model or statis-
tical phonetic model and works as a real-time signal processing
approach.

C. Spectral Intensity

The spectral intensity score is represented by the peak value
normalized by the maximum peak. The peak directly comes
from the selected subband correlation and the temporal corre-
lation (the same used in Section III-A for correlation envelope
generation). We however, for simplicity, do not consider the in-
tegration of the envelope [1] since this requires that syllable du-
ration be recomputed.

D. Pitch Patterns

Pitch patterns are more difficult to characterize and quantify.
We will consider various pitch pattern features.
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Fig. 4. Tllustration of different basis windows to enable representing pitch
plateau within-syllable.

1) Representation of Pitch Through Local Statistics: Here,
we extract the following widely-used pitch measures in each
syllable nucleus:

max the maximum of pitch

min the minimum of pitch

mean the mean of pitch

median the median of pitch

range the range of pitch

std the standard deviation of the pitch

2) Parametric Shape-Based Pitch Representations: We
consider a more complex pitch characterization in this section.
Taylor [30] proposed to characterize accent by a rise followed
by fall in the pitch trajectory. Either manual labeling or au-
tomatic tagging could be used to identify such patterns. For
automatic tagging process, a smoothing procedure followed by
peak detection is proposed to characterize such pitch patterns
[30]. The utility of such a representation of pitch in the context
of prominence detection was demonstrated in a recent study
by Knight [32] which shows that pitch plateaus are related to
prominence perception. As illustrated in Fig. 3, they define a
plateau as “being 4% down from any absolute peak in FO”.
The existence of such a pattern is deemed to be indicative of
prominence.

The plateau could be viewed as an extension to Taylor’s rise/
fall model. However, smoothing followed by peak counting as
originally proposed in [30] would not describe the plateau ef-
ficiently. Hence, to address this issue we apply a signal de-
composition approach. Specifically, for representing pitch pat-
terns within a syllable (Fig. 4, top row), we designed various
Gaussian-shaped windows to serve as basis functions. By appro-
priate selection of the Gaussian window bases, we could model
different plateau shape representations. Both the pitch and basis
are normalized to have unit energy such that the inner product
between normalized pitch and the different bases should be less
or equal than one with being one implying that they have iden-
tical shape. The implementation is as follows. We first remove
the syllable region without pitch. We take Gaussian windows
with the same length of the leftover region. We choose five vari-
ations (0.2, 0.5, 1, 5, 10) that model the window width from
narrow to wide. This will introduce five different inner products
as five independent scores. It should be pointed out that the de-
composition basis used here is Gaussian, and thus symmetric,
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and may not be optimal to capture the true pitch characteristics.
Howeyver, as we will show in a later section that such a heuristic
selection still is useful, at least for our problem of discriminating
prominence.

E. Normalization

In the previous sections, we have introduced various acoustic
features. In summary, we have one syllable duration feature, one
spectrum intensity feature, six local pitch statistics features and
five parametric shape-based features. Besides the last five para-
metric shape-based features that are inherently in the range of
[0,1], all the other features are variable in range. Without losing
generality, we normalize each feature category to a linear scale
by the maximum value of the feature in the utterance. So each
feature category are within the range of [0, 1]. This simplifies
our later comparative study.

F. Prominence Score

Three types of features deemed useful for prominence detec-
tion were described along with how they could be derived di-
rectly from the acoustic speech signal. Each of these features
is normalized at the utterance level such that they are mapped
to float numbers in the range [0, 1]. Following the method-
ology outlined in Section I-E, for the first choice (supervised ap-
proach), we train the classifier with manually transcribed data.
As the second option (unsupervised approach), equal weights
are given to each feature type assuming that they arise from in-
dependent sources and no prior knowledge is available. Here,
these features could thus be immediately fused to get a syllable
level prominence score also in the range of [0, 1]. These two
different prominence scores will be evaluated independently.

For most applications, prominence is evaluated at the word
level. We derive the word-level prominence score from the
syllable-level prominence score. Specifically, we use the most
prominent syllable to represent the word prominence. This is
based on the observation that the prominent syllable always
carries most information on word prominence.

IV. EXPERIMENTS

In Section I-E, we mentioned that the ideas of syllable dura-
tion and spectrum intensity are well established in terms of their
correlation with prominence. However, on the other hand, the
utility of the various pitch features that have been proposed in
the context of prominence detection still needs to be addressed.
In this section, we will study these issues using various experi-
mental measures. For this purpose, we will use the SASO dialog
corpus with manual prominence transcription. (See Section II).

A. Methodology

We apply the algorithm described in Section III and obtain
the 13 normalized features for each word. All the words can be
categorized into one of two classes: prominent and nonpromi-
nent. Then we collect the feature statistics for each class and
study the discriminant distance for the probability density func-
tions. Intuitively, a feature category that shows a large distance
between these two classes indicates that it is a good feature for
prominence detection.

B. Distance Measure

We apply the Kullback—Leibler distance and minimum classi-
fication error as measures of discrimination between prominent
class and nonprominent class.

1) Kullback—Leibler Distance Measure: The Kull-
back-Leibler distance [15] is perhaps the most frequently
used information-theoretic distance measure. If pl and p0 are
two probability densities each representing the pdf of prominent
class and nonprominent class respectively, the Kullback-Leibler
distance is defined to be

pl(z)
p0(7)

The baseline case is that the feature is uncorrelated with
prominence. Thus p0 and pl are similar and have a distance
very close to 0. If the distance is larger, it means that this feature
has a larger ability in discriminating between the prominent
and nonprominent class.

2) Minimum Classification Error Measure: A larger KL
distance implies a larger information divergence between
prominent and nonprominent classes, but it might not neces-
sarily mean we could have a a high classification rate by a
simple decision threshold. One popular classification measure
is by setting a decision threshold to minimize the classification
error. The classification error (or correct) rate together with
precision and recall rates are the typical measures of perfor-
mance. These performance estimates are

D(p1[|p0) = / p1(a) logy 22 g

S o LT WA
tp+ fp+in+ fn
tp :
R=—" %1009
tp-i—fn* %
p
P=———%100%
tp+ fp

where fp and fn refers to false positive and negative and ¢p
and tn are true positive and negative. The classification error £
provides an overall error measure. The recall R value measures
the percentage of correct predictions. The precision P gives the
percentage of positives (prominent) that are correctly predicted.
An important step in this measure is to balance the priors. In the
particular situation of the SASO dialog corpus, the prominent
and nonprominent classes are very unbalanced. For the discrim-
inative study, we could simply assume equal priors and compare
pdfs directly. For direct evaluation on the final fused prominence
scores, we downsample the nonprominent class size to make it
the same size as that of the prominent class.

C. Discriminative Analysis Results

In order to get a precise estimate, we estimate the pdfs through
normalized histogram directly. The width of the histogram bin
used was 0.01.

The overall results are given in Table 1. To better interpret the
results graphically, we use Parzen window generated pdfs in all
the graphs in this section. We will next discuss the results for
various feature categories.

1) Syllable Duration and Spectrum Intensity: We can ob-
serve (first two rows of Table I) that syllable duration and
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TABLE 1
OVERALL RESULTS

KL-Distance Error  Precision  Recall
(1 0'3) Rate Rate Rate
Syllable duration 6.50 36.8 64.7 65.7
Spectrum -
Intensity 8.18 359 60.0 67.6
Local statistics:
Pitch max 6.50 389 41.8 71.4
Pitch min 8.18 443 54.5 583
Pitch Median 6.38 40.3 46.8 65.9
Pitch Mean 6.13 40.1 459 66.5
Pitch Range 4.14 40.9 54.3 62.8
Pitch Std 4.14 429 59.0 60.1
Shape Features
Sigma=0.2 424 42.6 92.8 55.9
Sigma=0.5 4.22 424 93.0 56.0
Sigma=1 3.91 422 93.7 56.0
Sigma=5 4.57 44.1 89.4 56.9
Sigma=10 512 55.9 70.5 58.0
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Fig. 5. Spectrum intensity distributions.

spectrum intensity are the top two useful features in discrim-
inating prominence, with the results for spectrum intensity
being slightly better than syllable duration. Figs. 5 and 6 show
that they have similar pdf discrimination for the two classes
under consideration.
2) Pitch Local Statistics: Table I shows that among all local
statistics derived from pitch, pitch max provides the most dis-
criminating information for prominence detection. However, the
graphs of the pdfs (Fig. 7) do not depict this property clearly.
This feature also has very low precision rate as in Table I. This
in fact coincides with the results in [31]. We also find that pitch
min, median, and mean all have similar pdf as pitch max which
is illustrated in Fig. 7. In summary, we found that pitch local sta-
tistics only offer limited information about word prominence.
3) Parametric Shape-Based Features: The goal is to design
a mechanism to capture the plateau event (see Section III-D).
However, the result in Fig. 8 shows shows that the feature just
by itself is not effective either from the KL-distance or classi-
fication point of view. However, we will demonstrate that pitch
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Fig. 8. Parametric shape-based feature with sigma = 1.

plateau is quite useful when it is combined with other features to
do machine learning, demonstrating that it carries complemen-
tary information with respect to the other features.
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TABLE II
OVERALL DISCRIMINANT RESULT WITH SUPERVISED FUSION

Error Precision Recall
Rate Rate Rate
Co 359 60.0 67.6
C2+C3 29.5 76.6 68.3
Cl 26.6 78.7 71.1
Cl1+C2 26.2 79.7 71.3
C1+C3 254 79.2 72.6
Cl1+C2+C3 238 82.1 73.4
TABLE III

RESULTS WITH INDIRECT SUPERVISED FUSION

Error Precision Recall
Rate Rate Rate
Performance 27.3 66.9 89.7

V. FUSED PROMINENCE SCORE EVALUATION

In order to directly evaluate the utility of the score for
prominence detection, we first performed experiments using
the SASO corpus that had manually annotated word-level
prominence tags. The data used in this experiment comprises
role-play dialogs where human labelers tagged each word as
being prominent or nonprominent (Section II).

A. Supervised Method

We fuse the various scores, computed as described in
Section IV, to minimize the overall classification error. We
make the following categorical notations:

Co any single feature (any single row in Table I)

C1 syllable duration and spectrum intensity

C2  pitch local statistics

C3 parametric shape-based feature

We use support vector machine as our classifier. The “+ sign

in Table IT and the following discussion should be interpreted as
a concatenation of the corresponding feature vector. The perfor-
mance reported is using leave-one-out cross-validation (except
CO0).

We demonstrate in Table II the following.

¢ Syllable duration and spectrum intensity alone represents
a reliable category of features for prominence detection.
(ChH

» Parametric shape-based features demonstrate better perfor-
mance than pitch local statistics when combined with C1.
(C14+C3V.S.Cl1+C2)

* Pitch features are useful in prominence detection although
by themselves do not yield the best performance. The
combination of all features provides the best performance.
(C1+ C2+ C3)

B. “Indirect” Supervised Method for Fusion

In the next experiment, instead of relying on manually tagged
prominence labels, we use the content word and function word
information to derive the fusion weights. We adjust the weights
of each feature category to maximize the divergence between
these 2 classes. Results for prominence detection based on this
method are given in Table III.
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Fig. 9. Performance with unsupervised fusion.

TABLE IV
BEST PERFORMANCE WITH UNSUPERVISED FUSION
Error Precision Recall
Rate Rate Rate
Performance 26.6 80.0 70.0

We will see immediately see that this performance is some-
what worse than that obtained with the direct manual label in-
formation. This is not surprising since, although most prominent
words tend to be content words, not all content words in an utter-
ance tend to be prominent. Hence, the use of such information
for supervised training may be somewhat misleading.

C. A Simple Unsupervised Method

The above supervised fusion method has the risk of over fit-
ting the data. As an alternative, a simple unsupervised approach,
that scores prominence with the simple average of syllable dura-
tion, spectrum intensity and pitch max (which is the best single
feature from pitch feature category), can be considered. It should
be noted that these features are not directly addable. Such oper-
ation is possible only when each feature category is normalized
to be a score (in our case, a float number between 0 and 1).

Such operation could be formulated as

PS = (syl_dur_score + spec_score + pitch_max _score) /3.

The distributions of these scores are shown in Fig. 10. Results
based on analysis of variance (ANOVA) indeed show that the
scores for prominent and nonprominent cases are statistically
different in a highly significant way, p < le — 8 (Fig. 11).
In classification experiments, we obtain an error rate of 26.6%
(refer to Fig. 9 and Table IV), which is below the best results by
2.8%.

VI. POS-BASED EVALUATION

In Section I-D, we discussed the idea of using POS as a
means of indirectly evaluating the prominence detection algo-
rithm. The underlying hypothesis is that words that appear more
prominent in spoken language tend to belong to certain POS
categories such as for instance those related to content words.
This notion can be used to verify the prominence score derived
from acoustic features. The evaluation process is summarized
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Fig. 12. POS-based evaluation.

in Fig. 12. Using the unsupervised method as outlined in the
previous section (Section V-C), we can arrive at a word-level
prominence score from speech immediately. For the supervised
method (Section V-A), we start from the value of decision
function of the support vector machine classifier and then
normalize it to the range of [0, 1].

If we are given the true transcription or ASR output, the POS
could be robustly retrieved through well-established statistical
methods, e.g, Brill’s tagger [16]. The error in this POS tagging
process has been shown to be statistically insignificant.

The prominence scores for each POS category are then sub-
ject to further analysis. For both supervised and unsupervised
methods, we obtained the prominence scores of the various POS
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TABLE V
COMPARISON OF TWO FUSION METHODS

Supervised score
(10%)

4.58

Unsupervised score
(10%)

2.93

KL-distance

categories in the ICSI Switchboard dataset. For illustration pur-
poses, the results of the unsupervised case are shown in Fig. 13.
(The supervised scores are similar but with a different scale.)

From Fig. 13, we could observe that there is a clear separa-
tion between the prominence scores for the content and func-
tion word classes. To investigate the statistical significance of
this content word-function word score discrimination, we per-
formed an ANOVA analysis. One way ANOVA showed that the
prominence scores of content and function word classes are sta-
tistically distinct, p < le — 6. These results indicate that the
prominence score has salient statistical divergence information
between these two classes.

In Section V, the supervised method performs better than un-
supervised method on the manually tagged prominence corpus.
We wish to see if such fact could be extended to content/func-
tion word divergence. The KL-distances for both methods are
in Table V.

The supervised prominence detection trained on manually
tagged corpus derives a larger KL-distance between content and
function word. This provides extra evidence for the validity of
the supervised method, even though we train the supervised
prominence detector on a small manually tagged dialog corpus.

While content/function word prominence difference in
speech is a commonly accepted fact [30], evidence of which
we have observed in our experiments, what we have evaluated
so far is indeed not prominence directly but the indirect impli-
cation that the proposed acoustic score bears on prominence.
However, the tags of content/function words could be retrieved
through an automatic and objective process and the tagging
error is almost negligible. This is apparently attractive than
the manual subjective prominent/nonprominent tagging. So
the statistical divergence information we observed between
content and function word class could serve as an objective per-
formance measure of prominence detection algorithm. Thus,
different prominence detection algorithms could compare
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performance directly in this way without requiring laborious
manual transcription.

Additionally, the prominence score we proposed in this
paper could serve as an evidence of content word/function word
distinction. Such a capability has potentially rich applications
in automatic speech recognition and natural language under-
standing, although the experimental exploration of this topic is
beyond the scope of this paper. Some potential applications are
listed in the next section.

VII. DISCUSSIONS AND CONCLUSIONS

It is apparent from the results (Fig. 13) that content words
have higher prominence scores than function words. There is
a clear, statistically significant, distinction between the two
classes. These results were computed from 5582 spontaneous
speech utterances, and attest to statistical generality of the
observation. Applying this algorithm to manually tagged
prominence set data demonstrates even clearer discriminating
ability (Fig. 11). In this sense, we can note that the proposed
prominence score conveys useful information in the prosodic
and POS realms in processing spontaneous speech.

The other issue about prominence detection is the role of con-
text. The definition we quoted previously implies that promi-
nence of a word should be measured by comparing with their
surrounding context. Such information resides not only in the
acoustic signal, the topic of this paper, but also in linguistic
features [39]. The definition also implies that the comparison
would be optimal locally, rather than globally. In this paper,
we focus on just acoustic study (“ASR/transcription” free) and
leave linguistic context analysis as future work. Additionally,
we treat the acoustic comparison to be global. One justifica-
tion to this is because our analysis considered mostly short ut-
terances that makes global analysis a good approximation to
local analysis. We also believe that the global method we de-
rived would be easily ported to local analysis by defining the ap-
propriate context region. Linguistic information could provide
a further source to improve our algorithm in this regards.

There are other applications beyond that illustrated. For in-
stance, the prominence score could also work as a confidence
score for automatic speech recognition. Such scores can be used
in conjunction with language models to appropriately weight
lexical items e.g., function versus content words, since they tend
to have different discrimination behavior (function words are
more error prone at decoding). Similarly, prominence scores can
be used in automatic NLU to improve its performance. Such ap-
plications are topics of ongoing investigations such as through
the SASO project [20].
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